Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532010

RESUMEN

Depression's link to serotonin dysregulation is well-known. The monoamine theory posits that depression results from impaired serotonin activity, leading to the development of antidepressants targeting serotonin levels. However, their limited efficacy suggests a more complex cause. Recent studies highlight mitochondria as key players in depression's pathophysiology. Mounting evidence indicates that mitochondrial dysfunction significantly correlates with major depressive disorder (MDD), underscoring its pivotal role in depression. Exploring the serotonin-mitochondrial connection, our study investigated the effects of chronic serotonin treatment on induced-pluripotent stem cell-derived astrocytes and neurons from healthy controls and two case study patients. One was a patient with antidepressant non-responding MDD ("Non-R") and another had a non-genetic mitochondrial disorder ("Mito"). The results revealed that serotonin altered the expression of genes related to mitochondrial function and dynamics in neurons and had an equalizing effect on calcium homeostasis in astrocytes, while ATP levels seemed increased. Serotonin significantly decreased cytosolic and mitochondrial calcium in neurons. Electrophysiological measurements evidenced that serotonin depolarized the resting membrane potential, increased both sodium and potassium current density and ultimately improved the overall excitability of neurons. Specifically, neurons from the Non-R patient appeared responsive to serotonin in vitro, which seemed to improve neurotransmission. While it is unclear how this translates to the systemic level and AD resistance mechanisms are not fully elucidated, our observations show that despite his treatment resistance, this patient's cortical neurons are responsive to serotonergic signals. In the Mito patient, evidence suggested that serotonin, by increasing excitability, exacerbated an existing hyperexcitability highlighting the importance of considering mitochondrial disorders in patients with MDD, and avoiding serotonin-increasing medication. Taken together, our findings suggested that serotonin positively affects calcium homeostasis in astrocytes and increases neuronal excitability. The latter effect must be considered carefully, as it could have beneficial or detrimental implications based on individual pathologies.

2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256041

RESUMEN

The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.


Asunto(s)
Caricaceae , Trastorno Depresivo Mayor , Humanos , Astrocitos , Depresión , Mitocondrias , Neuronas , Fibroblastos , Mitomicina
3.
Acta Neuropathol Commun ; 11(1): 147, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697350

RESUMEN

TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.


Asunto(s)
Glioblastoma , Glioma , Células Madre Mesenquimatosas , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Macrófagos Asociados a Tumores , Macrófagos , Receptores de GABA/genética
4.
Mol Psychiatry ; 28(10): 4438-4450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495886

RESUMEN

ß-amyloid (Aß) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aß-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aß (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aß (AD: ßT = 0.412 ± 0.196 vs. ßA = 0.142 ± 0.123, p < 0.001; AD-CBS: ßT = 0.385 ± 0.176 vs. ßA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (ßT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aß related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Microglía/patología , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Atrofia/patología , Biomarcadores , Proteínas tau , Receptores de GABA
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166751, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37169037

RESUMEN

Neurodegenerative disease-associated microglia commonly exhibit harmful cholesterol accumulation that impairs their ability to resolve the neuroinflammatory response, contributing to disease onset and progression. Neurosteroids, whose levels have been often found significantly altered in brain diseases, are the most potent endogenous anti-inflammatory molecules exerting beneficial effects on activities of brain cells, including microglia. For the first time, the impact of neurosteroidogenesis on cholesterol homeostasis for the immune surveillance phenotype maintenance was investigated in a human microglia in vitro model. To enhance and inhibit neurosteroidogenesis, pharmacological stimulation and knock-down of 18 kDa Translocator Protein (TSPO), which is involved in the neurosteroidogenesis rate-limiting step, were used as experimental approaches, respectively. The obtained results point to an essential autocrine control of neurosteroidogenesis in orchestrating cholesterol trafficking in human microglia. TSPO pharmacological stimulation ensured cholesterol turnover by strengthening cholesterol efflux systems and preserving healthy immune surveillant phenotype. Conversely, TSPO knock-down induced an impairment of the controlled interplay among cholesterol synthesis, efflux, and metabolism mechanisms, leading to an excessive cholesterol accumulation and acquisition of a chronically activated dysfunctional phenotype. In this model, the exogenous neurosteroid administration restored proper the cholesterol clearance. The TSPO ability in promoting native neurosteroidogenesis opens the way to restore cholesterol homeostasis, and thus to maintain microglia proper functionality for the treatment of neuroinflammation-related brain diseases.


Asunto(s)
Encefalopatías , Enfermedades Neurodegenerativas , Humanos , Microglía/metabolismo , Receptores de GABA/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fenotipo , Homeostasis , Encefalopatías/metabolismo
6.
Cells ; 12(6)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980295

RESUMEN

Microglia are the resident immune cells of the central nervous system. Upon stimulus presentation, microglia polarize from a resting to an activated state. Microglial translocator protein 18 kDa (TSPO) is considered a marker of inflammation. Here, we characterized the role of TSPO by investigating the impact of TSPO deficiency on human microglia. We used TSPO knockout (TSPO-/-) variants of the human C20 microglia cell line. We found a significant reduction in the TSPO-associated protein VDAC1 in TSPO-/- cells compared to control cells. Moreover, we assessed the impact of TSPO deficiency on calcium levels and the mitochondrial membrane potential. Cytosolic and mitochondrial calcium concentrations were increased in TSPO-/- cell lines, whereas the mitochondrial membrane potential tended to be lower. Assessment of the mitochondrial DNA copy number via RT-PCR revealed a decreased amount of mtDNA in the TSPO-/- cells when compared to controls. Moreover, the metabolic profiles of C20 cells were strongly dependent on the glycolytic pathway. However, TSPO depletion did not affect the cellular metabolic profile. Measurement of the mRNA expression levels of the pro-inflammatory mediators revealed an attenuated response to pro-inflammatory stimuli in TSPO-depleted cells, implying a role for the TSPO protein in the process of microglial polarization.


Asunto(s)
Microglía , Mitocondrias , Receptores de GABA , Humanos , Calcio/metabolismo , Línea Celular , Microglía/metabolismo , Mitocondrias/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
7.
iScience ; 25(10): 105082, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36093380

RESUMEN

The SARS-CoV-2 virus has triggered a worldwide pandemic. According to the BioGrid database, CLN7 (MFSD8) is thought to interact with several viral proteins. The aim of this work was to investigate a possible involvement of CLN7 in the infection process. Experiments on a CLN7-deficient HEK293T cell line exhibited a 90% reduced viral load compared to wild-type cells. This observation may be linked to the finding that CLN7 ko cells have a significantly reduced GM1 content in their cell membrane. GM1 is found highly enriched in lipid rafts, which are thought to play an important role in SARS-CoV-2 infection. In contrast, overexpression of CLN7 led to an increase in viral load. This study provides evidence that CLN7 is involved in SARS-CoV-2 infection. This makes it a potential pharmacological target for drug development against COVID-19. Furthermore, it provides insights into the physiological function of CLN7 where still only little is known about.

8.
Cell Mol Life Sci ; 79(8): 448, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35876901

RESUMEN

The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.


Asunto(s)
Proteínas del Ojo , Retinosquisis , Animales , Proteínas del Ojo/genética , Masculino , Mamíferos/metabolismo , Ratones , Células Fotorreceptoras/metabolismo , Potasio/metabolismo , Retinosquisis/genética , Retinosquisis/metabolismo , Retinosquisis/patología , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Porcinos
9.
Mol Psychiatry ; 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732695

RESUMEN

The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder.

10.
Mol Psychiatry ; 27(7): 2918-2926, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35444254

RESUMEN

Efficient treatment of stress-related disorders, such as depression, is still a major challenge. The onset of antidepressant drug action is generally quite slow, while the anxiolytic action of benzodiazepines is considerably faster. However, their long-term use is impaired by tolerance development, abuse liability and cognitive impairment. Benzodiazepines act as positive allosteric modulators of É£-aminobutyric acid type A (GABAA) receptors. 3α-reduced neurosteroids such as allopregnanolone also are positive allosteric GABAA receptor modulators, however, through a site different from that targeted by benzodiazepines. Recently, the administration of neurosteroids such as brexanolone or zuranolone has been shown to rapidly ameliorate symptoms in post-partum depression or major depressive disorder. An attractive alternative to the administration of exogenous neurosteroids is promoting endogenous neurosteroidogenesis via the translocator protein 18k Da (TSPO). TSPO is a transmembrane protein located primarily in mitochondria, which mediates numerous biological functions, e.g., steroidogenesis and mitochondrial bioenergetics. TSPO ligands have been used in positron emission tomography (PET) studies as putative markers of microglia activation and neuroinflammation in stress-related disorders. Moreover, TSPO ligands have been shown to modulate neuroplasticity and to elicit antidepressant and anxiolytic therapeutic effects in animals and humans. As such, TSPO may open new avenues for understanding the pathophysiology of stress-related disorders and for the development of novel treatment options.


Asunto(s)
Ansiolíticos , Trastorno Depresivo Mayor , Neuroesteroides , Animales , Ansiolíticos/metabolismo , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Benzodiazepinas , Trastorno Depresivo Mayor/tratamiento farmacológico , Ligandos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
11.
Mol Psychiatry ; 27(2): 907-917, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34980886

RESUMEN

Various single nucleotide polymorphisms (SNPs) in the oxytocin receptor (OXTR) gene have been associated with behavioral traits, autism spectrum disorder (ASD) and other diseases. The non-synonymous SNP rs4686302 results in the OXTR variant A218T and has been linked to core characteristics of ASD, trait empathy and preterm birth. However, the molecular and intracellular mechanisms underlying those associations are still elusive. Here, we uncovered the molecular and intracellular consequences of this mutation that may affect the psychological or behavioral outcome of oxytocin (OXT)-treatment regimens in clinical studies, and provide a mechanistic explanation for an altered receptor function. We created two monoclonal HEK293 cell lines, stably expressing either the wild-type or A218T OXTR. We detected an increased OXTR protein stability, accompanied by a shift in Ca2+ dynamics and reduced MAPK pathway activation in the A218T cells. Combined whole-genome and RNA sequencing analyses in OXT-treated cells revealed 7823 differentially regulated genes in A218T compared to wild-type cells, including 429 genes being associated with ASD. Furthermore, computational modeling provided a molecular basis for the observed change in OXTR stability suggesting that the OXTR mutation affects downstream events by altering receptor activation and signaling, in agreement with our in vitro results. In summary, our study provides the cellular mechanism that links the OXTR rs4686302 SNP with genetic dysregulations associated with aspects of ASD.


Asunto(s)
Trastorno del Espectro Autista , Nacimiento Prematuro , Trastorno del Espectro Autista/tratamiento farmacológico , Femenino , Células HEK293 , Humanos , Recién Nacido , Oxitocina/metabolismo , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Relación Estructura-Actividad
12.
Life (Basel) ; 11(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073557

RESUMEN

TSPO-PET tracers are sensitive to a single-nucleotide polymorphism (rs6971-SNP), resulting in low-, medium- and high-affinity binders (LABs, MABs and HABS), but the clinical relevance of [18F]GE-180 is still unclear. We evaluated the impact of rs6971-SNP on in vivo [18F]GE-180 binding in a healthy brain and in pseudo-reference tissue in neuro-oncological and neurodegenerative diseases. Standardized uptake values (SUVs) of [18F]GE-180-PET were assessed using a manually drawn region of interest in the frontoparietal and cerebellar hemispheres. The SUVs were compared between the LABs, MABs and HABs in control, glioma, four-repeat tauopathy (4RT) and Alzheimer's disease (AD) subjects. Second, the SUVs were compared between the patients and controls within their rs6971-subgroups. After excluding patients with prior therapy, 24 LABs (7 control, 5 glioma, 6 4RT and 6 AD) were analyzed. Age- and sex-matched MABs (n = 38) and HABs (n = 50) were selected. The LABs had lower frontoparietal and cerebellar SUVs when compared with the MABs and HABs, but no significant difference was observed between the MABs and HABs. Within each rs6971 group, no SUV difference between the patients and controls was detected in the pseudo-reference tissues. The rs6971-SNP affects [18F]GE-180 quantification, revealing lower binding in the LABs when compared to the MABs and HABs. The frontoparietal and cerebellar ROIs were successfully validated as pseudo-reference regions.

13.
Eur J Nucl Med Mol Imaging ; 49(1): 234-245, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33978829

RESUMEN

PURPOSE: Calcineurin inhibitors (CNI) can cause long-term impairment of brain function. Possible pathomechanisms include alterations of the cerebral immune system. This study used positron emission tomography (PET) imaging with the translocator protein (TSPO) ligand 18F-GE-180 to evaluate microglial activation in liver-transplanted patients under different regimens of immunosuppression. METHODS: PET was performed in 22 liver-transplanted patients (3 CNI free, 9 with low-dose CNI, 10 with standard-dose CNI immunosuppression) and 9 healthy controls. The total distribution volume (VT) estimated in 12 volumes-of-interest was analyzed regarding TSPO genotype, CNI therapy, and cognitive performance. RESULTS: In controls, VT was about 80% higher in high affinity binders (n = 5) compared to mixed affinity binders (n = 3). Mean VT corrected for TSPO genotype was significantly lower in patients compared to controls, especially in patients in whom CNI dose had been reduced because of nephrotoxic side effect. CONCLUSION: Our results provide evidence of chronic suppression of microglial activity in liver-transplanted patients under CNI therapy especially in patients with high sensitivity to CNI toxicity.


Asunto(s)
Trasplante de Hígado , Microglía , Encéfalo/metabolismo , Humanos , Terapia de Inmunosupresión/efectos adversos , Microglía/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo
14.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800471

RESUMEN

The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.


Asunto(s)
Sustitución de Aminoácidos , Anoctaminas , Mutación Missense , Análisis de Secuencia de Proteína , Anoctaminas/química , Anoctaminas/genética , Humanos , Estabilidad Proteica
15.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803741

RESUMEN

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


Asunto(s)
Microglía/metabolismo , Neuroesteroides/metabolismo , Receptores de GABA/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Neuroesteroides/química , Pregnenolona/química , Pregnenolona/metabolismo
16.
Life Sci Alliance ; 4(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33758075

RESUMEN

Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Ácido Cítrico/metabolismo , Neoplasias Pancreáticas/metabolismo , Fibroblastos Asociados al Cáncer/fisiología , Línea Celular Tumoral , Epigénesis Genética , Humanos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/patología , Células del Estroma/metabolismo , Microambiente Tumoral/fisiología , Neoplasias Pancreáticas
17.
Cancers (Basel) ; 14(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008218

RESUMEN

In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.

18.
Eur J Neurosci ; 53(1): 172-182, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31793127

RESUMEN

Major depression is a complex disease and-among others, inflammation appears to play an important role in its pathophysiology. In this study, we investigated a broad range of cytokines in depressed patients. Plasma levels of interleukin (IL)-12/ IL-23p40, IL-15, IL-16, IL-17A, IL-1α, IL-7, tumor necrosis factorß and vascular endothelial growth factor were compared in 48 patients suffering from major depression before, after one and after six weeks of antidepressive treatment in relation to therapy response. Interestingly, the level of IL-17A turned out to rise significantly in the non-responder group compared to responder during antidepressive treatment. IL-17A is a pro-inflammatory cytokine that initiates the production of other cytokines, thereby inducing and mediating immune response. It is also involved in allergic and autoimmune-related diseases. The database investigating the role of IL-17A in major depressive disorder has grown within the last few years comparing levels of this cytokine in depressed patients versus healthy subjects. However, little is known about the expression of IL-17A during the course of antidepressive treatment. In summary, our study provides valuable evidence that this cytokine might serve as a marker of therapy resistance to antidepressants.


Asunto(s)
Trastorno Depresivo Mayor , Interleucina-17/sangre , Antidepresivos/uso terapéutico , Citocinas/sangre , Trastorno Depresivo Mayor/tratamiento farmacológico , Resistencia a Medicamentos , Humanos
19.
Psychoneuroendocrinology ; 124: 105100, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33338971

RESUMEN

BACKGROUND: Activity of the two major stress systems, the hypothalamic-pituitary-adrenal (HPA) and the sympathetic-adrenal-medullary (SAM) axis, has already been shown to be modulated by different compounds that bind to the central benzodiazepine receptor. Less is known about ligands that modulate the peripheral benzodiazepine receptor - meanwhile known as the translocator protein 18 kDa (TSPO) - which constitute promising candidates in the search of novel anxiolytics. To close this gap, the present study compared the effects of the benzodiazepine alprazolam and the TSPO ligand etifoxine on responses of the HPA and SAM axes to the Trier Social Stress Test, a standardized paradigm to induce acute psychosocial stress in humans, performed in Virtual Reality (VR-TSST). METHODS: Sixty healthy males, aged between 18 and 55 years, were randomly assigned to receive either a daily dose of 1.5 mg alprazolam, 150 mg etifoxine, or placebo over five days. On the last day of intake, they were exposed to the VR-TSST. We assessed changes of salivary cortisol, allopregnanolone, (nor-) epinephrine in serum, TSPO expression in platelets as well as heart rate (HR), skin conductance level (SCL) and self-reports in response to the stress task. Repeated measures ANOVAs were conducted to examine treatment effects on these stress response variables during the course of VR-TSST. RESULTS: The response of salivary cortisol to the VR-TSST was significantly blunted in participants pre-treated with alprazolam but was not affected by etifoxine. While levels of allopregnanolone, epinephrine and norepinephrine increased in response to stress, TSPO expression decreased. None of those endocrine stress markers was affected by the active treatments, whereas TSPO expression increased after etifoxine administration over all study days. There were no effects of the two anxiolytics on HR, SCL or any self-report measurement. CONCLUSION: The current study confirmed the attenuating effects of benzodiazepines on stress-induced HPA axis activity but did not reveal a comparable effect of the TSPO ligand etifoxine. The long-term consequences of a pharmacologically blunted response of the HPA axis to an acute stressor should be further elucidated. Due to the missing effects of etifoxine on stress-related parameters in our sample of healthy subjects, it might be concluded that the therapeutic effects of this TSPO ligand are restricted to stronger or pathological stress responses, respectively.


Asunto(s)
Alprazolam/farmacología , Ansiolíticos , Realidad Virtual , Adolescente , Adulto , Ansiolíticos/farmacología , Benzodiazepinas , Epinefrina , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisario , Ligandos , Masculino , Persona de Mediana Edad , Oxazinas , Sistema Hipófiso-Suprarrenal , Pregnanolona , Pruebas Psicológicas , Receptores de GABA , Receptores de GABA-A , Saliva , Estrés Psicológico , Adulto Joven
20.
Cancers (Basel) ; 12(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066460

RESUMEN

Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...